

Qierling (Beijing) Health Technology Co., Ltd.

TEST REPORT

SCOPE OF WORK

EMC TESTING-SEE PAGE 2

REPORT NUMBER

201225119GZU-005

ISSUE DATE

[REVISED DATE]

26-February-2021

[-----]

PAGES

87

DOCUMENT CONTROL NUMBER

EN 55014:2017+A11:2020 (With electronics)-a © 2017 INTERTEK

Room 02, & 101/E201/E301/ E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Telephone: +86 20 8213 9688

Facsimile: +86 20 3205 7538 www.intertek.com.cn

Applicant Name & : Qierling (Beijing) Health Technology Co., Ltd.

Address No 101-42/101-43 (Dongsheng district), 9th Floor, No 1 Building,

No 8th, Heiguan Road, Haidian District, Beijing City, China.

Manufacturing Site : Healthlead Corproation Limited

Building A, Digital Silicone Valley Industry Park, No. 89, Hengping Road, Henggang Street, Longgang District, Shenzhen, P.R. China

Intertek Report No: : 201225119GZU-005

Test standards

EN 55014-1:2017+A11:2020 EN IEC 61000-3-2:2019 EN 61000-3-3:2013+A1:2019 EN 55014-2:2015

Sample Description

Product : Air Purifiering Disinfector Model No. : DS-X400W, DS-P400

DS-S800, DS-X1000W, DS-X1000N-A

Electrical Rating : 100V-240V, 50Hz, 38W for model DS-X400W, DS-P400

220V-240V, 50Hz, 90W for model DS-S800

220V-240V, 50Hz, 120W for model DS-X1000W, DS-X1000N-A

Serial No. Not Labeled

Date Received : 25 December 2020

Date Test : 15 January 2021-07 February 2021

Conducted

Prepared and Checked By

Approved By:

Elena Lei

Helen Ma Team Leader

Engineer Team Lead

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

Version: 07 April 2020 Page 2 of 87 EN 55014:2017+A11:2020 (With electronics)-a

CONTENT

TES	STREPORT		1
CC	ONTENT		3
1.	TEST F	RESULTS SUMMARY	5
2.	EMC F	RESULTS CONCLUSION	6
3.	LABOI	RATORY MEASUREMENTS	7
4.		MENT USED DURING TEST	
٦. 5.		EST	
		N 55014-1 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST	
	5.1.1	Block Diagram of Test Setup	
	5.1.2	Test Setup and Procedure	
	5.1.3	Test Data and curve	
		N 55014-1 CONDUCTED COMMON MODE (ASYMMETRIC MODE) DISTURBAN	
		ETWORK PORTS	
		N 55014-1 DISCONTINUOUS CONDUCTED DISTURBANCE VOLTAGE	
	5.3.1	Block Diagram of Test Setup	
	5.3.2	Test Setup and Procedure	
	5.3.3	Test Data and curve	18
		N 55014-1 RADIATED DISTURBANCE (9 KHZ-30 MHZ)- MAGNETIC FIELD	1.0
		CURRENT METHOD	
		ADIATED DISTURBANCE (9 KHz-30 MHz)- MAGNETIC FIELD STRENGTH MET	HOD
	13		10
		N 55014-1 RADIATED DISTURBANCE POWER	
	5.6.1	Block Diagram of Test Setup	
	5.6.2	Test Setup and Procedure	
	5.6.3	Test Data and curve	
		N 55014-1 RADIATED DISTURBANCE(30MHz-1000MHz)	
6.	HARN	IONICS OF CURRENT	22
	6.1 B	LOCK DIAGRAM OF TEST SETUP	22
	6.2 T	EST SETUP AND PROCEDURE	22
	6.3 T	EST DATA	23
7.	FLICK	R	25
	7.1 D	A OCH DIA CD AM OD TEGER CERTIE	25
		LOCK DIAGRAM OF TEST SETUP	
		EST SETUP AND PROCEDURE	
	7.2.1	Definition	
	7.2.2	Test condition	
		TA	
8.		EST	
	8.1 E	N 61000-4-2(Pursuant to EN 55014-2) Electrostatic Discharge Imm 3	JNITY
	8.1.1	Block Diagram of Test Setup	28
	8.1.2	Test Setup and Procedure	

	8.1.3	Test Result	30
8.	2 EN	61000-4-6(Pursuant to EN 55014-2) Injected Current (0.15 MI	Нz то 230
M	IHz) 31		
	8.2.1	Block Diagram of Test Setup	31
	8.2.2	Test Setup and Procedure	31
	8.2.3	Test Result	31
8.	.3 EN	61000-4-4(Pursuant to EN 55014-2) Electrical Fast Transien	T/BURST32
	8.3.1	Block Diagram of Test Setup	32
	8.3.2	Test Setup and Procedure	32
	8.3.3	Test Result	32
8.	4 EN	61000-4-5(Pursuant to EN 55014-2) Surge Immunity	33
	8.4.1	Block Diagram of Test Setup	33
	8.4.2	Test Setup and Procedure	
	8.4.3	Test Result	33
8.	.5 EN	61000-4-11(PURSUANT TO EN 55014-2) VOLTAGE DIPS AND INTERR	SUPTIONS 34
	8.5.1	Block Diagram of Test Setup	34
	8.5.2	Test Setup and Procedure	34
	8.5.3	Test Result	34
8.	6 EN	61000-4-3(Pursuant to EN 55014-2) Radiated Electromagnet	IC FIELD
IN	MUNITY		35
	8.6.1	Block Diagram of Test Setup	35
	8.6.2	Test Setup and Procedure	
	8.6.3	Test Result	
9.	APPEND	DIX I - PHOTOS OF TEST SETUP	37
10.	ΔPPFI	NDIX II – PHOTOS OF FUT	42

1. TEST RESULTS SUMMARY

Test Item	Standard	Result
Continuous conducted disturbance voltage	EN 55014-1:2017+A11:2020	Pass
Conducted Disturbance at wired network ports	EN 55014-1:2017+A11:2020	N/A
Discontinuous conducted disturbance voltage	EN 55014-1:2017+A11:2020	Pass
Radiated disturbance(9kHz-30MHz)	EN 55014-1:2017+A11:2020	N/A
Radiated disturbance power	EN 55014-1:2017+A11:2020	Pass
Radiated disturbance(30MHz-1000MHz)	EN 55014-1:2017+A11:2020	N/A
Harmonic of current	EN IEC 61000-3-2:2019	Pass
Flicker	EN 61000-3-3:2013+A1:2019	Pass
ESD immunity	EN 55014-2: 2015 Reference: EN 61000-4-2:2009	Pass
Radiated EM field immunity	EN 55014-2:2015 Reference: EN 61000-4- 3:2006+A1:2008+A2:2010	N/A
EFT immunity	EN 55014-2:2015 Reference: EN 61000-4-4:2012	Pass
Surge immunity	EN 55014-2:2015 Reference: EN 61000-4-5:2014	Pass
Inject current immunity	EN 55014-2:2015 Reference: EN 61000-4-6:2014	Pass
Voltage dips and interruption immunity	EN 55014-2:2015 Reference: EN 61000-4- 11:2004	Pass

- 1. The symbol "N/A" in above table means Not Applicable.
- 2. When determining the test results, measurement uncertainty of tests has been considered.

2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to EMC Directive 2014/30/EU Performed on the Air Purifiering Disinfector, Models: DS-X400W, DS-P400, DS-S800, DS-X1000W, DS-X1000N-A.

We tested the Air Purifiering Disinfector, Models: DS-X400W, DS-X1000W. to determine if it was in compliance with the relevant EN standards as marked on the Test Results Summary. We found that the unit met the requirements of EN 55014-1, EN 61000-3-2, EN 61000-3-3, EN 55014-2 (EN 61000-4-2), EN 55014-2 (EN 61000-4-4), EN 55014-2 (EN 61000-4-6), EN 55014-2 (EN 61000-4-5), & EN 55014-2 (EN 61000-4-11) standards when tested as received. The worst case's test data was presented in this test report.

Models difference:

Model	NFC	WIFI module	Motor /ratings	Ratings
DS-X400W		With	SIC-58CS-F185-1/	100V-240V,
			DC310V; 85W, 0,34A;	50Hz, 38W
DS-P400		With	SIC-58CS-F185-1/	100V-240V,
			DC310V; 85W, 0,34A;	50Hz, 38W
DS-S800	With	With	ZWF-75L/ DC310V;	220V-240V,
			75W; 0,34A	50Hz, 90W
DS-X1000W	With	With	SIC-58CS-F185-1/	220V-240V,
			DC310V; 85W, 0,34A;	50Hz, 120W
DS-X1000N-A	With		SIC-58CS-F185-1/	220V-240V,
			DC310V; 85W, 0,34A;	50Hz, 120W
Remark: DS-X400W and DS-P400 are identical except model names.				

The production units are required to conform to the initial sample as received when the units are placed on the market.

3. LABORATORY MEASUREMENTS

Configuration Information

Support Equipment: N/A

Rated Voltage and frequency under test: 220-240 V; 50 Hz

Condition of Environment: Temperature: 22~28°C

Relative Humidity:35~60%

Atmosphere Pressure:86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. The EMS measurements had been made in the frequency bands being investigated, with the EUT in the most susceptible operating mode consistent with normal applications. The configuration of the test sample had been varied to achieve maximum susceptibility.

3. Test Location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

All tests were performed at:

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

Except Radiated Disturbance and Radiated Susceptibility were performed at: Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China

4. Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Conducted Emission (9 kHz-150 kHz)	2.79 dB
2	Conducted Emission (150 kHz-30 MHz)	2.55 dB
3	Disturbance Power (30 MHz-300 MHz)	3.04 dB
4	Radiated Emission (30 MHz-1 GHz)	4.80 dB
5	Radiated Emission (1 GHz-6 GHz)	4.97 dB
6	Radiated Emission (6 GHz-18 GHz)	4.89 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with CISPR16-4-2:2011+A1:2014 +A2:2018.

The measurement uncertainty is given with a confidence of 95%, k=2.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

4. EQUIPMENT USED DURING TEST

Conducted Disturbance-Mains Terminal (2)

Conducted Dist	conducted Distarbance Mains Terminar (2)					
Equipment No.	Equipment	Model	Manufacturer	Calibration Interval		
EM080-04	EMI receiver	ESCS30	R&S	1Y		
EM031-04	EMI receiver	ESR3	R&S	1Y		
EM006-06	LISN	ENV216	R&S	1Y		
SA047-111	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y		
EM004-03	EMC shield Room	8m×4m×3m	Zhongyu	1Y		
EM031-04-01	EMC32 software (CE)	V10.01.00	R&S	N/A		

Click (2)

ener (=)				
Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM008-02	Click Tester	DDA55	AFJ	1Y
EM008-02-01	Switch Box	SW04/32 CL55C	AFJ	1Y
EM006-04	LISN	ESH2-Z5	R&S	1Y
EM032-02	LISN	NSLK8128	SCHWARZBECK	1Y
SA047-111	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM004-03	EMC shield Room	8m×4m×3m	Zhongyu	1Y

Disturbance Power

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM080-05	EMI receiver	ESCI	R&S	1Y
EM081-04	Absorb Power Clamp	MDS-21	R&S	1Y
SA047-112	Digital Temperature-Humidity Recorder	RS210	YIJIE	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	1Y

Harmonic Currents and Flicker (2)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM001-03	3-Phase Harmonic & Flicker Measuring System	Profline2145- 400	TESEQ	1Y
EM001-03- 01	AC Power Source	NSG1007	TESEQ	1Y
SA047-140	Digital Temperature-Humidity Recorder	AW5145Y	ASAIR	1Y

Electrostatic Discharge (1)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM077-04	ESD Simulator	NSG437	TESEQ	1Y

SA047-143 Digital Temperature-Humidit Recorder	AW5145Y	ASAIR	1Y
--	---------	-------	----

Electrical Fast Transient/Burst (2)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM005-10	EFT Generator	NSG3025	TESEQ	1Y
EM005-10-01	Capacitive Coupling Clamp	CDN8014	TESEQ	1Y
SA047-140	Digital Temperature-Humidity Recorder	AW5145Y	ASAIR	1Y

Surge (3)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM005-09	Surge/DIP Generator	NSG3040	TESEQ	1Y
SA047-140	Digital Temperature-Humidity Recorder	AW5145Y	ASAIR	1Y

Conducted Susceptibility (2)

Conducted 3us	ceptibility (2)			
Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM019-01	Conducted Immunity Testing System	NSG4070- 75	Teseq GmbH	1Y
EM019-01-01	Current Electromagnetic injection clamp	KEMZ801S	Teseq GmbH	1Y
EM019-01-02	Coupling&Decoupling Network	CDNM016	Teseq GmbH	1Y
EM019-01-03	6dB Attenuator	ATN6075	Teseq GmbH	1Y
EM019-03	Current Clamp	CIP 9136A	Teseq GmbH	1Y
SA047-140	Digital Temperature-Humidity Recorder	AW5145Y	ASAIR	1Y

Voltage Dips and Interruptions (2)

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM005-09	Surge/DIP Generator	NSG3040	TESEQ	1Y
EM005-09-01	Voltage Regulator	INA6501	TESEQ	1Y
SA047-140	Digital Temperature-Humidity Recorder	AW5145Y	ASAIR	1Y

Radiated Susceptibility

Equipment No.	Equipment	Model	Manufacturer	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m³	ETS LINDGREN	1Y
EM031-01	Signal generator	SMB100A	R&S	1Y
EM086-11	Power meter	NRP2	R&S	1Y
EM086-11- 01	Power sensor	NRP-Z91	R&S	1Y
EM046-01	Power Amplifier	80RF1000-300	MILMEGA	1Y
EM046-03	Power Amplifier	AS0860-75-45	MILMEGA	1Y
EM061-05	Log Per.	VULP 9118 E	SCHWARZBECK	2Y

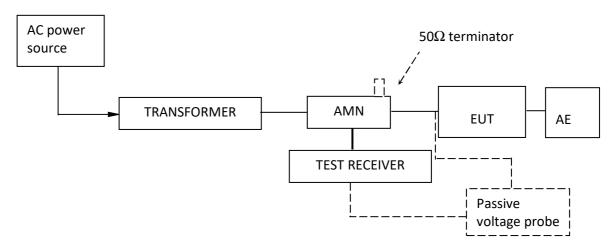
	Broadband Antenna			
EM061-07 Stacked LogPer.		STLP 9149	SCHWARZBECK	2Y
EIVIOO1-07	Broadband Antenna	31LF 3143	SCHWARZBECK	21
EM034-01	Open Switch and	OSP120/1505.3009K12	R&S	1Y
EIVIU34-01	Control Platform	O3P120/1303.3009K12	NOS	11
EM045-01-	EMC32 software	V10.01.00	R&S	1Y
01	(RE/RS)	V10.01.00	RQS	11
	Digital			
SA047-118	Temperature-	RS210	YIJIE	1Y
	Humidity Recorder			

Detail of the equipment calibration due date:

Equipment No.	Cal. Due date				
	(DD-MM-YYYY)				
Conducted Distur	rbance-Mains				
EM080-05	19/07/2021				
EM006-05	07/06/2021				
SA047-112	16/11/2021				
EM004-04	21/01/2022				
Conducted Distu					
Terminal (2)					
EM031-04	07/01/2022				
EM006-06	06/09/2021				
SA047-111	16/11/2021				
EM004-03	21/01/2022				
EM031-04-01					
Conducted Distu					
Control Terminal EM080-05	(1)				
	19/07/2021				
EM080-05-01 SA047-112	06/09/2021 16/11/2021				
EM004-04	21/01/2022				
Conducted Distu					
Control Terminal	(2)				
EM080-05	19/07/2021				
EM005-06-01	06/09/2021				
SA047-112	06/09/2021 16/11/2021				
EM004-04	21/01/2022				
Conducted Distu	bance-Telecom				
Terminal					
EM080-05	19/07/2021				
EM011-05	12/04/2021 12/04/2021				
EM011-06	12/04/2021				
EM006-06	06/09/2021				
SA047-112	16/11/2021				
EM004-04	21/01/2022				
Conducted Distur	rbance-Antenna				
EM031-04	07/01/2022				
EM084-02	21/07/2021				
EM041-01	05/01/2022				
EM041-02	05/01/2022				
SA047-111	16/11/2021				
EM004-03	21/01/2022				
Click (1)	/				
EM008-01	19/07/2021				
EM006-06	06/09/2021				
SA047-111	16/11/2021				
EM004-03	21/01/2022				
Click (2)	45/44/2024				
EM008-02	15/11/2021				
EM008-02-01	15/11/2021 19/07/2021				
EM032-02	19/0//2021				
SA047-111 EM004-03	16/11/2021 21/01/2022				
Disturbance Pow	21/U1/2U22				
EM080-05	er 19/07/2021				
EM081-04	11/03/2021				
SA047-112	11/03/2021 16/11/2021				
EM004-04	21/01/2022				
LIVIUU4-04	Z1/U1/ZUZZ				

	Cal Dua data
Equipment No.	Cal. Due date
Radiated Disturb	(DD-MM-YYYY)
Method)	•
EM080-05	19/07/2021
EM003-02	15/11/2021 15/11/2021
EM003-03	15/11/2021
EM003-01-05	06/09/2021 20/07/2021
EM032-02-01	20/07/2021
EM032-02-02	20/07/2021 16/11/2021
SA047-112 EM004-04	21/01/2022
Radiated electron	
disturbances (9 k	Hz-30 MHz)
EM031-04	07/01/2022
EM061-04	8/03/2021 16/11/2021
SA047-111	16/11/2021
EM004-03	21/01/2022
Radiated Disturb	ance (9 kHz-30
MHz)	40/04/2024
EM030-04	10/04/2021 16/10/2021
EM031-02 EM011-04	18/06/2021
EM031-02-01	12/04/2021
SA047-118	12/04/2021 21/07/2021
EM045-01-01	N/A
Radiated Disturb	
GHz)	ance (50 Will 1
EM030-04	10/04/2021
EM031-02	16/10/2021
EM033-01	18/09/2021 12/04/2021
EM031-02-01	12/04/2021
EM036-01	1 21/07/2021
SA047-118	21/07/2021 N/A
EM045-01-01	N/A
Radiated Disturb	
EM030-04	10/04/2021
EM031-02 EM031-03	16/10/2021
EM033-02	06/09/2021 18/06/2021
EM033-02-02	12/04/2021
EM022-03	12/04/2021 10/05/2021
SA047-118	21/07/2021
EM045-01-01	N/A
	,
Harmonic Curren	
EM001-02	15/11/2021
SA047-111	16/11/2021
Harmonic Curren	
EM001-03	11/09/2021 11/09/2021
EM001-03-01	11/09/2021
SA047-140 EMF	05/01/2022
	25/02/2022
EM007-03	
SA047-112 Induced Current	16/11/2021 Density (20 kHz-
10 MHz)	Density (20 KHZ-
EM031-04	07/01/2022
EM007-02	07/01/2022
SA047-111	16/11/2021

	Cal. Due date
Equipment No.	(DD-MM-YYYY)
Electrostatic Disc	harge (1)
EM077-04	15/04/2021
SA047-133	16/03/2021
Electrostatic Disc	harge (2)
EM077-02	08/05/2021
SA047-133	16/03/2021
Electrical Fast Tra (1)	insient/Burst
EM005-12	12/04/2021
EM005-10-01	15/04/2021
SA047-140	
Electrical Fast Tra (2)	
EM005-10	05/05/2021
FM005-10-01	
SA047-140	15/04/2021 05/01/2022
Surge (2)	55/52/2522
EM005-08	19/07/2021
EM005-08 SA047-140	19/07/2021 05/01/2022
Surge (3)	
EM005-09	22/06/2021
SA047-140	05/01/2022
Conducted Susce	ptibility (1)
EM046-04	10/12/2021
EM084-02	21/07/2021 06/09/2021
EM003-01-04	06/09/2021
EM003-01-05	06/09/2021
EM019-01-01	06/09/2021
EM019-03	13/01/2021
SA047-140	05/01/2022
Conducted Susce	ptibility (2)
EM019-01 EM019-01-01	12/04/2021 06/09/2021
EM019-01-02	
EM019-01-03	06/09/2021 06/09/2021
EM019-03	19/07/2021
SA047-140	05/01/2022
Voltage Dips and	
(2) EM005-09	22/06/2021
EN 400E 00 01	22/06/2021
SA047-140	22/06/2021 05/01/2022
Radiated Suscept	ibility
EM030-04	10/04/2021
EM031-01	10/04/2021 22/07/2021
EM086-11	15/11/2021
EM086-11-01	
EM046-01	15/11/2021 19/03/2021 06/09/2021
EM046-03	06/09/2021
EM061-05	11/10/2021
EM061-07	11/10/2021
EM034-01	
EM045-01-01	24/07/2024
SA047-118	21/07/2021
Power Frequency	iviagnetic Field
EM001-03	11/09/2021
EM001-03-02	11/09/2021 05/01/2022
SA047-140	03/01/2022
Ring Wave	12/04/2021
EM005-11 SA047-140	12/04/2021 05/01/2022
3AU47-14U	03/01/2022



5. EMITEST

5.1 EN 55014-1 Continuous Conducted Disturbance Voltage Test

Test Result: Pass

5.1.1 Block Diagram of Test Setup

5.1.2 Test Setup and Procedure

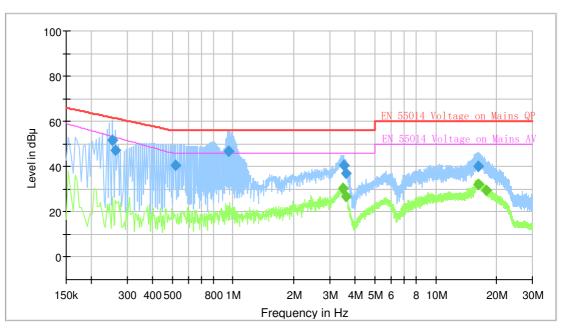
The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.4m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

When measurements of disturbance are being made, the appliance shall be operated under the conditions defined in Annex A.

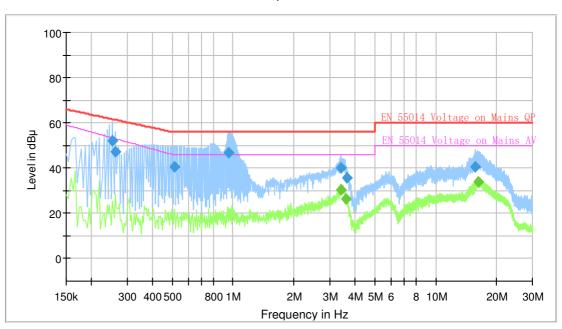


5.1.3 Test Data and curve

At mains terminal: Tested Wire: Live DS-X400W

Operation Mode: Work at maximum power

Final Result


Frequency (MHz)	QuasiPeak (dB¦ÌV)	CAverage (dB¦ÌV)	Limit (dB¦ÌV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.254000	51.81		61.63	9.82	1000.0	9.000	L1	ON	9.6
0.262000	47.09		61.37	14.28	1000.0	9.000	L1	ON	9.6
0.522000	40.59		56.00	15.41	1000.0	9.000	L1	ON	9.6
0.950000	46.93		56.00	9.07	1000.0	9.000	L1	ON	9.7
3.494000		30.35	46.00	15.65	1000.0	9.000	L1	ON	9.7
3.506000	40.36		56.00	15.64	1000.0	9.000	L1	ON	9.7
3.610000	36.98		56.00	19.02	1000.0	9.000	L1	ON	9.7
3.614000		26.60	46.00	19.40	1000.0	9.000	L1	ON	9.7
16.134000	40.00		60.00	20.00	1000.0	9.000	L1	ON	10.3
16.206000		32.35	50.00	17.65	1000.0	9.000	L1	ON	10.3
17.746000		29.46	50.00	20.54	1000.0	9.000	L1	ON	10.2

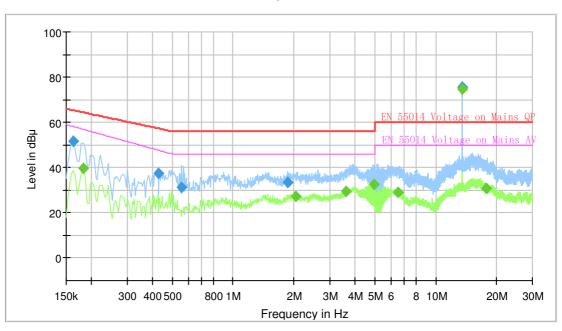
- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

Tested Wire: Neutral Operation Mode: Work at maximum power

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dB¦ÌV)	CAverage (dB¦ÌV)	Limit (dB¦ÌV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.254000	52.08		61.63	9.55	1000.0	9.000	N	ON	9.6
0.262000	47.36		61.37	14.01	1000.0	9.000	N	ON	9.6
0.514000	40.56		56.00	15.44	1000.0	9.000	N	ON	9.7
0.950000	46.94		56.00	9.06	1000.0	9.000	N	ON	9.7
3.414000	40.33		56.00	15.67	1000.0	9.000	N	ON	9.7
3.422000	-	30.29	46.00	15.71	1000.0	9.000	N	ON	9.7
3.614000	-	26.48	46.00	19.52	1000.0	9.000	N	ON	9.7
3.634000	35.81		56.00	20.19	1000.0	9.000	N	ON	9.7
15.754000	40.36		60.00	19.64	1000.0	9.000	N	ON	10.3
16.214000		33.84	50.00	16.16	1000.0	9.000	N	ON	10.3

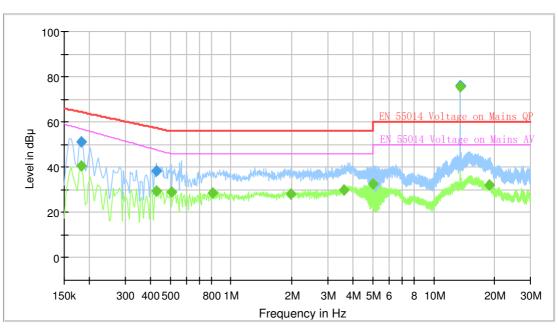

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

At mains terminal: Tested Wire: Live DS-X1000W

Operation Mode: Work at maximum power

Full Spectrum

Final Result


Frequency (MHz)	QuasiPeak (dB¦ÌV)	CAverage (dB¦ÌV)	Limit (dB¦ÌV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.162000	51.43		65.36	13.93	1000.0	9.000	L1	ON	9.6
0.182000		39.87	56.91	17.04	1000.0	9.000	L1	ON	9.6
0.426000	37.41		57.33	19.92	1000.0	9.000	L1	ON	9.6
0.558000	31.33		56.00	24.67	1000.0	9.000	L1	ON	9.6
1.854000	33.48		56.00	22.52	1000.0	9.000	L1	ON	9.7
2.034000		27.38	46.00	18.62	1000.0	9.000	L1	ON	9.7
3.586000		29.54	46.00	16.46	1000.0	9.000	L1	ON	9.7
4.978000		32.73	46.00	13.27	1000.0	9.000	L1	ON	9.8
6.510000		28.81	50.00	21.19	1000.0	9.000	L1	ON	9.9
13.562000		74.93	50.00	-24.93	1000.0	9.000	L1	ON	10.2
13.562000	75.65		60.00	-15.65	1000.0	9.000	L1	ON	10.2
17.758000		31.00	50.00	19.00	1000.0	9.000	L1	ON	10.2

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

Tested Wire: Neutral Operation Mode: Work at maximum power

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dB¦ÌV)	CAverage (dB¦ÌV)	Limit (dB¦ÌV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.182000		40.61	56.91	16.30	1000.0	9.000	N	ON	9.6
0.182000	51.02		64.39	13.37	1000.0	9.000	N	ON	9.6
0.426000		29.64	47.73	18.09	1000.0	9.000	N	ON	9.6
0.426000	38.47		57.33	18.86	1000.0	9.000	N	ON	9.6
0.506000		29.19	46.00	16.81	1000.0	9.000	N	ON	9.7
0.806000		28.66	46.00	17.34	1000.0	9.000	N	ON	9.7
1.970000		28.36	46.00	17.64	1000.0	9.000	N	ON	9.7
3.602000		30.11	46.00	15.89	1000.0	9.000	N	ON	9.7
4.994000		32.72	46.00	13.28	1000.0	9.000	N	ON	9.8
13.562000	76.08		60.00	-16.08	1000.0	9.000	N	ON	10.2
13.562000		75.46	50.00	-25.46	1000.0	9.000	N	ON	10.2
18.730000		31.95	50.00	18.05	1000.0	9.000	N	ON	10.3

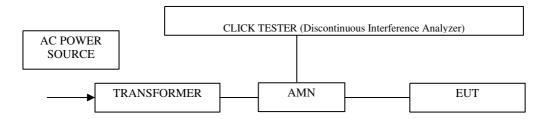
Remark:

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

At load/control terminal:

Not Applicable.

5.2 EN 55014-1 Conducted Common Mode (Asymmetric Mode) Disturbance at wired network Ports


Test Result: Not Applicable

Remark: The test only apply to balanced unscreened ports intended for connection to unscreened balanced pairs

5.3 EN 55014-1 Discontinuous Conducted Disturbance Voltage

Test Result: Pass

5.3.1 Block Diagram of Test Setup

5.3.2 Test Setup and Procedure

The EUT was placed on a 0.8m high non-metallic table in shielded room, the wall of shielded room used as Ground Reference Plane (GRP), and keeps a distance of at least 0.8m from any of the other metallic surface.

The EUT was connected to an artificial mains network and at a distance of 0.8m from it, the excess lead of EUT was bundled with a length of 0.3m to 0.4m parallel to the main lead. The number of counted clicks above the permitted limit for continuous interference and their duration, spacing and rate were measured during the observation time. When relevant, a permitted(relaxed) limit for clicks was calculated and a second measurement was performed. Determination of compliance with the permitted limit according to the upper quartile method was applied. The frequency 150kHz, 500 kHz, 1.4 MHz and 30 MHz was checked.

When measurements of disturbance are being made, the appliance shall be operated under the conditions defined in Annex A.

5.3.3 Test Data and curve

Frequency (MHz)	0.15	0.50	1.40	30.00	
Permitted limit for continuous	66	56	56	60	
interference (dBμV)					
Short Clicks [T<10ms]	0	0	0	0	
Mid. Clicks [10ms <t<20ms]< td=""><td>0</td><td>0</td><td>0</td><td>0</td></t<20ms]<>	0	0	0	0	
Long Clicks [T>20ms]	0	0	0	0	
Total clicks (number)	0	0	0	0	
Switching operation (number)					
Factor					
Observation time (min.)	120				
Click rate, N	0.00	0.00	0.00	0.00	
Value to be added (dB)					
Counted clicks allowed to exceed the					
permitted limit (number)					
Permitted limit for clicks (dBµV)					
Counted clicks exceeding the limit					
(number)					
Complies with the limit (Pass/Fail)	Pass	Pass	Pass	Pass	

The appliance was deemed to comply with the limits if fulfilling the three conditions below:

- the click rate is not more than 5.
- none of the caused clicks has a duration longer than 20 ms.
- 90 % of the caused clicks have a duration less than 10 ms.

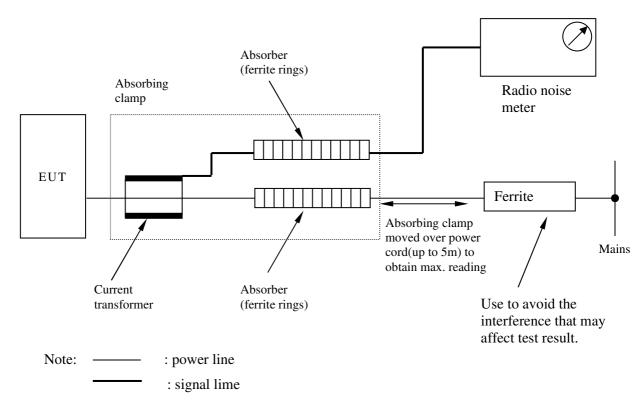
5.4 EN 55014-1 Radiated Disturbance (9 kHz-30 MHz)- Magnetic field induced current method

Test Result: Not Applicable

Remark: The test only applies to induction cooking appliances.

5.5 Radiated Disturbance (9 kHz-30 MHz)- Magnetic field strength method

Test Result: Not Applicable


Remark: The test only applies to induction cooking appliances.

5.6 EN 55014-1 Radiated Disturbance Power

Test Result: Pass

5.6.1 Block Diagram of Test Setup

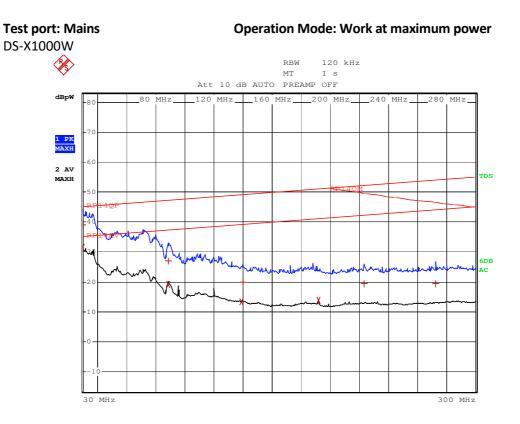
5.6.2 Test Setup and Procedure

The disturbance power was measured with the EUT in a shielded room. The height of the table shall be 0,1 m \pm 0,025 m for appliances primarily intended to be positioned on the floor in normal use, and 0,8 m \pm 0,05 m for other appliances. The EUT was placed on a non-metallic table at least 0.8m from other metallic surface and the mains lead of EUT was extended to about 6m long. The auxiliary lead longer than 0.25m but shorter than twice length of absorbing clamp was extend to twice length of clamp and those longer than twice length was extend to 6 meters.

The absorbing clamp was moved along the lead to obtain maximum disturbance. The EUT was set to achieve the maximum emission level, and for each point which appears a relevant high emission level, the absorbing clamp was moved around the lead to get the maximum disturbance value.

The bandwidth of test receiver was set at 120 kHz. The frequency range from 30MHz to 300MHz was checked.

When measurements of disturbance are being made, the appliance shall be operated under the conditions defined in Annex A.


5.6.3 Test Data and curve

Test port: Mains DS-X400W RBW 120 kHz MT 1 s Att 10 dB AUTO PREAMP OFF ABPW 120 kHz MT 1 s Att 10 dB AUTO PREAMP OFF

	EDIT	r PEAK LIST (Final	Measurement Resul	ts)
Tra	ce1:	RP14QP		
Tra	ce2:	RP14AV		
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBpW	DELTA LIMIT dB
1	Quasi Peak	30.32 MHz	25.87 L1	-19.14
2	Average	31.56 MHz	18.99 L1	-16.05
1	Quasi Peak	85 MHz	20.15 L1	-26.88
2	Average	111.2 MHz	14.38 L1	-23.62
1	Quasi Peak	138.08 MHz	19.83 L1	-29.16
2	Average	139.2 MHz	13.35 L1	-25.69
1	Quasi Peak	210.24 MHz	18.88 L1	-32.78
2	Average	232.32 MHz	13.88 L1	-28.60
1	Quasi Peak	247.4 MHz	18.92 L1	-34.12

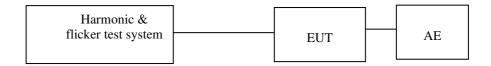
300 MHz

	EDI:	I PEAK LIST (Final	. Measurement Resul	ts)
Tra	ce1:	RP14QP		
Tra	.ce2:	RP14AV		
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBpW	DELTA LIMIT dB
1	Quasi Peak	30.04 MHz	38.90 L1	-6.09
2	Average	30.04 MHz	31.52 L1	-3.48
1	Quasi Peak	88.68 MHz	26.84 L1	-20.32
2	Average	89.08 MHz	18.99 L1	-18.19
2	Average	139 MHz	13.23 L1	-25.80
1	Quasi Peak	140.08 MHz	19.81 L1	-29.26
2	Average	192.16 MHz	13.95 L1	-27.04
1	Quasi Peak	223.16 MHz	19.32 L1	-32.83
1	Quasi Peak	272.16 MHz	19.32 L1	-34.64

The measurement quasi-peak data of disturbance power is lower than applicable limit reduced by the margin (0 to 10dB) at frequency range 200 to 300 MHz and the maximum clock frequency is less than 30MHz

5.7 EN 55014-1 Radiated Disturbance(30MHz-1000MHz)

Test Result: Not Applicable


Remark:

☑ Radiated disturbance shall not be conducted, if the measurement quasi-peak data of disturbance power is lower than applicable limit reduced by the margin (0 to 10dB) at frequency range 200 to 300 MHz and the maximum clock frequency is less than 30MHz,.

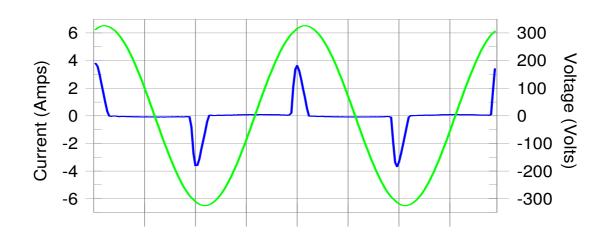
6. Harmonics of current

Test Result: Pass

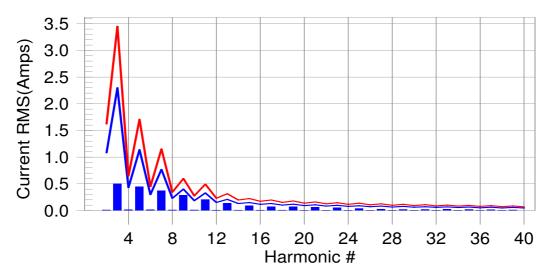
6.1 Block Diagram of Test Setup

6.2 Test Setup and Procedure

Harmonics of the fundamental current were measured up to 40 order harmonics using a digital power meter with an analogue output and frequency analyser which was integrated in the harmonic & flicker test system. The measurements were carried out under steady conditions.



6.3 Test Data


Harmonics – Class-A per Ed. 4.0 (incl. inter-harmonics)

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonics H9-48.1% of 150% limit, H9-72% of 100% limit.

Current Test Result Summary (Run time)

EUT: Air Purifiering Disinfector
Test category: Class-A per Ed. 5.0 (2018) (European limits)
Test date: 2021/2/23
Start time: 9:48:50
End time: 9:51:33

Test duration (min): 2.5 Data file name: WIN2105 H-000617.cts data

Comment: Work at maximum power

Test Result: Pass Source qualification: Normal

THC(A): 0.873 I-THD(%): 158.3 POHC(A): 0.104 POHC Limit(A): 0.251

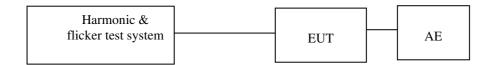
Highest parameter values during test:

 V_RMS (Volts):
 229.943
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 3.858
 I_RMS (Amps):
 1.037

 I_Fund (Amps):
 0.551
 Crest Factor:
 3.734

 Power (Watts):
 121.2
 Power Factor:
 0.511


	(,						
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.009	1.080	0.9	0.010	1.620	0.6	Pass
3 4	0.501	2.300	21.8	0.503	3.450	14.6	Pass
	0.012	0.430	2.9	0.013	0.645	2.0	Pass
5	0.445	1.140	39.1	0.447	1.710	26.1	Pass
5 6 7	0.012	0.300	3.8	0.012	0.450	2.7	Pass
	0.371	0.770	48.2	0.372	1.155	32.2	Pass
8	0.011	0.230	4.7	0.011	0.345	3.3	Pass
9	0.288	0.400	72.0	0.289	0.600	48.1	Pass
10	0.010	0.184	5.4	0.011	0.276	3.8	Pass
11	0.206	0.330	62.6	0.207	0.495	41.8	Pass
12	0.009	0.153	6.1	0.010	0.230	4.3	Pass
13	0.137	0.210	65.2	0.137	0.315	43.6	Pass
14	0.009	0.131	6.5	0.009	0.197	4.6	Pass
15	0.090	0.150	59.8	0.090	0.225	40.1	Pass
16	0.008	0.115	6.8	0.008	0.173	4.8	Pass
17	0.070	0.132	53.3	0.071	0.198	35.8	Pass
18	0.007	0.102	6.9	0.007	0.153	4.8	Pass
19	0.067	0.118	56.5	0.067	0.178	37.9	Pass
20	0.006	0.092	6.7	0.007	0.138	4.8	Pass
21	0.063	0.107	58.5	0.063	0.161	39.2	Pass
22	0.005	0.084	6.5	0.006	0.125	4.6	Pass
23	0.052	0.098	53.5	0.053	0.147	35.8	Pass
24	0.005	0.077	N/A	0.005	0.115	N/A	Pass
25	0.038	0.090	42.4	0.039	0.135	28.6	Pass
26	0.004	0.071	N/A	0.005	0.107	N/A	Pass
27	0.026	0.083	30.7	0.026	0.125	20.6	Pass
28	0.004	0.066	N/A	0.004	0.099	N/A	Pass
29	0.020	0.078	26.3	0.021	0.116	17.8	Pass
30	0.004	0.061	N/A	0.004	0.092	N/A	Pass
31	0.022	0.073	29.6	0.022	0.109	20.0	Pass
32	0.003	0.058	N/A	0.004	0.086	N/A	Pass
33	0.022	0.068	32.4	0.022	0.102	21.8	Pass
34	0.003	0.054	N/A	0.003	0.081	N/A	Pass
35	0.019	0.064	30.3	0.020	0.096	20.3	Pass
36	0.003	0.051	N/A	0.003	0.077	N/A	Pass
37	0.014	0.061	23.7	0.015	0.091	16.1	Pass
38	0.003	0.048	N/A	0.003	0.073	N/A	Pass
39	0.010	0.058	16.7	0.010	0.087	11.5	Pass
40	0.002	0.046	N/A	0.002	0.069	N/A	Pass

7. Flicker

Test Result: Pass

7.1 Block Diagram of Test Setup

7.2 Test Setup and Procedure

7.2.1 Definition

Flicker: impression of unsteadiness of visual sensation induced by a lighting

stimulus whose luminance or spectral distribution fluctuates with

time.

Pst: Short-term flicker indicator The flicker severity evaluated over a

short period (in minutes); Pst=1 is the conventional threshold of

irritability

Plt: long-term flicker indicator; the flicker severity evaluated over a long

period (a few hous). Using successive Pst valuse.

dc: the relative steady-state voltage changedmax: the maximum relative voltage changed(t): the value during a voltage change

7.2.2 Test condition

The EUT was set to produce the most unfavourable sequence of voltage changes.

Test Data

Flicker Test Summary (Run time)

Model No.: DS-X1000W

Operation mode: Work at maximum power

Test Result: Pass Status: Test Completed

Parameter values recorded during the test: Vrms at the end of test (Volt): 229.83

Vrms at the end of test (Volt): T-max (mS): 0.0 Test limit (mS): 500.0 **Pass** Test limit (%): Test limit (%): Highest dc (%): 0.00 3.30 **Pass** Highest dmax (%): Highest Pst (10 min. period): -0.09 4.00 **Pass** Test limit: 0.064 1.000 **Pass**

8. EMS TEST

Performance Criteria:

Criterion A:

The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permission loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended.

Criterion B:

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permission loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description, and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

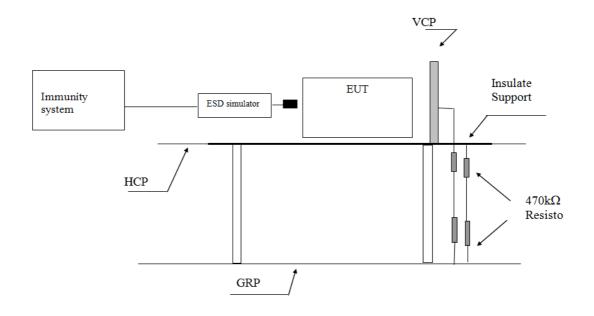
Criterion C:

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instruction for use.

Operation mode of EMS test:

Test Item	Operation mode
ESD immunity	Fan speed high
Radiated EM field immunity	Fan speed high
EFT immunity	Fan speed high
Surge immunity	Fan speed high
Inject current immunity	Fan speed high
Voltage dips and interruption immunity	Fan speed high

Note: "N/A" means Not Applicable in below text.



8.1 EN 61000-4-2(Pursuant to EN 55014-2) Electrostatic Discharge Immunity

Performance criterion: B

Test Result: Pass

8.1.1 Block Diagram of Test Setup

Note: HCP means Horizontal Coupling Plane,

VCP means Vertical Coupling Plane

GRP means Ground Reference Plane

8.1.2 Test Setup and Procedure

The EUT was put on a 0.8m high wooden table 0.1m high for floor standing equipment standing on the ground reference plane (GRP) 3m by 2m in size, made by iron 1.0 mm thick.

A horizontal coupling plane(HCP) 1.6m by 0.8m in size was placed on the table, and the EUT with its cables were isolated from the HCP by an insulating support thick than 0.5mm. The VCP 0.5m by 0.5m in size & HCP were constructed from the same material type & thickness as that of the GRP, and connected to the GRP via a $470 k\Omega$ resistor at each end.

The distance between EUT and any of the other metallic surface excepted the GRP, HCP & VCP was greater than 1m.

The EUT was arranged and connected according to its functional requirements.

Direct static electricity discharges were applied only to those points and surface which were accessible to personnel during normal usage.

On each preselected points 10 times of each polarity single discharge were applied. The time interval between successive single discharges was at least 1s.

The ESD generator was held perpendicular to the surface to which the discharge was applied. The discharge return cable of the generator was kept at a distance of 0.2m whilst the discharge was being applied. During the contact discharges, the tip of the discharge electrode was touched the EUT before the discharge switch was operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT.

Indirect discharge was conducted to objects placed near the EUT, simulated by applying the discharges of the ESD generator to a coupling plane, in the contact discharge mode.

After each discharge, the ESD generator was removed from the EUT, the generator was then retriggered for a new single discharge. For ungrounded product, a grounded carbon fibre brush with bleeder resistors ($2\times470~\text{k}\Omega$) in the grounding cable was used after each discharge to remove remnant electrostatic voltage.

For air discharge, a minimum of 10 single air discharges were applied to the selected test point for each such area.

8.1.3 Test Result

Direct Application of ESD

Direct Contact Discharge

Applied Voltage (kV)	No. of Discharge for each point	Result (Pursuant to EN 55014-2)	Discharged Points
4	20	N/A	Accessible metal parts of the EUT
			Conductive substrate with coating which is not declared to be insulating

Direct Air Discharge

Applied Voltage (kV)	No. of Discharge for each point	Result (Pursuant to EN 55014-2)	Discharged Points
8	20	Pass	All accessible points where contact discharge cannot be applied such as Displays, Indicators light, Keyboard, Button, Switch, Knob, Air gap, Slots, Hole and so on

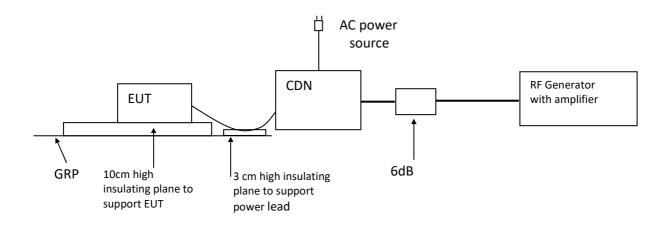
Indirect Application of ESD

Horizontal Coupling Plane under the EUT

Applied Voltage	No. of Discharge for	Result	Discharged Point
(kV)	each point	(pursuant to EN 55014-2)	
4	20		At the front edge of each HCP opposite the centre point of each unit of the EUT

Vertical Coupling Plane beside the EUT

Applied Voltage (kV)	No. of Discharge for each point	Result (pursuant to EN 55014-2 criterion B)	Discharged Point
4	20	Pass	The centre of the vertical edge of the coupling plane



8.2 EN 61000-4-6(Pursuant to EN 55014-2) Injected Current (0.15 MHz to 230 MHz)

Performance criterion: A

Test Result: Pass

8.2.1 Block Diagram of Test Setup

8.2.2 Test Setup and Procedure

The EUT was placed on an insulating support of 0.1m height above a ground reference Plane, arranged and connected to satisfy its functional requirement.

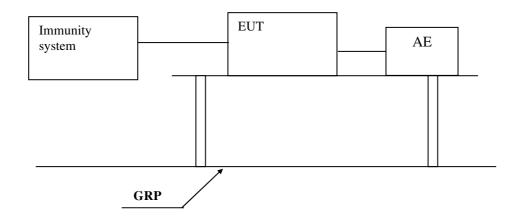
All relevant cables were provided with the appropriate coupling and decoupling devices at a distance between 0.1m and 0.3m from the projected geometry of the EUT on an insulating support of 0.03m height above the ground reference plane.

Test voltage was verified before each testing though power meter combined in the RF generator with AMP.

Dwell time was set to 3s and step was set as 1% to keep sufficient response time for EUT. The frequency from 0.15MHz to 230MHz was checked.

8.2.3 Test Result

Port:	Frequency (MHz)	Level (Pursuant to EN55014-2)	Result
A.C. Power Lines	0.15 to 230	3V (r.m.s.)	Pass
D.C. Power Lines	0.15 to 230	1V (r.m.s.)	N/A
Signal Lines	0.15 to 230	1V (r.m.s.)	N/A
Control Lines	0.15 to 230	1V (r.m.s.)	N/A



8.3 EN 61000-4-4(Pursuant to EN 55014-2) Electrical Fast Transient/Burst

Performance criterion: B

Test Result: Pass

8.3.1 Block Diagram of Test Setup

8.3.2 Test Setup and Procedure

The EUT was placed on a 0.1m high wooden table, standing on the ground reference plane 3m by 2m in size, made by steel 1mm thick.

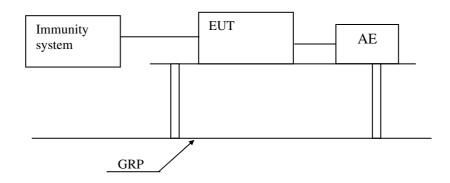
The distance between the EUT and any other of the metallic surface except the GRP was greater than 0.5m

The mains lead excess than 0.5m was folded to avoid a flat coil and situated at a distance of 0.1m above the ground reference plane to insure the distance between the coupling device and the EUT was 0.5m.

The EUT was arranged and connected to satisfy its functional requirement and supplied by the coupling-decoupling network.

8.3.3 Test Result

Level (Pursuant to EN55014-2)	Polarity	A.C. Power supply line and protective earth terminal	D.C. Power Lines, Signal Line & Control Line
0.5kV	+	N/A	N/A
0.5kV	-	N/A	N/A
1kV	+	Pass	N/A
1kV	-	Pass	N/A



8.4 EN 61000-4-5(Pursuant to EN 55014-2) Surge Immunity

Performance criterion: B

Test Result: Pass

8.4.1 Block Diagram of Test Setup

8.4.2 Test Setup and Procedure

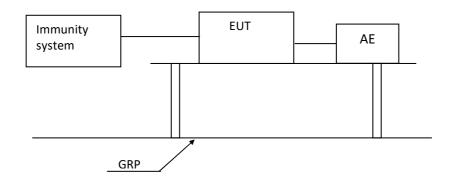
The surge was applied to the EUT power supply terminals via the capacitive coupling network.

Decoupling networks were required in order to avoid possible adverse effects on equipment not under test that might be powered by the same lines and to provide sufficient decoupling impedance to the surge wave so that the specified wave might be developed on the lines under test.

The EUT was arranged and connected according to its functional requirements.

The EUT was placed on a 0.1m high wooden support above the GRP), supplied by the coupling-decoupling network, and arranged and connected to satisfy its functional requirement. The power cord between the EUT and the coupling/decoupling network was less than 2 meters.

8.4.3 Test Result


Level (Pursuant to EN 55014-2)		Result
Between Phase And Phase:	1kV	N/A
Between Phase And Neutral:	1kV	Pass
Between Phase And Earth:	2kV	N/A
Between Neutral And Earth:	2kV	N/A

8.5 EN 61000-4-11(Pursuant to EN 55014-2) Voltage Dips and Interruptions

Performance criterion: C Test Result: Pass

8.5.1 Block Diagram of Test Setup

8.5.2 Test Setup and Procedure

The EUT was placed on an insulating support of 0.8m height, standing on a ground reference plane, and arranged and connected to satisfy its functional requirement

The test was performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer.

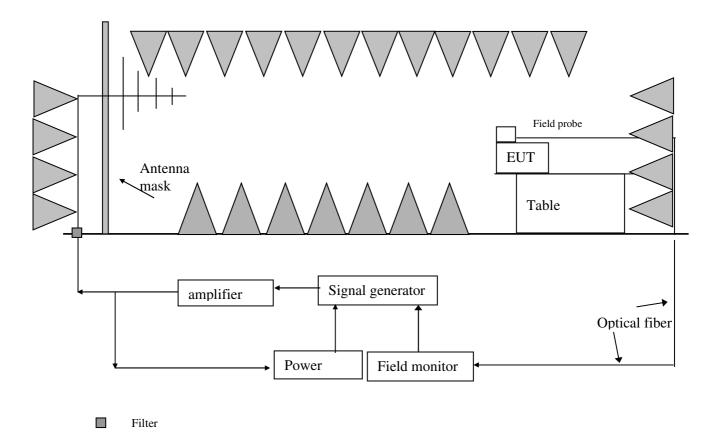
The EUT was tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10 s minimum. Each representative mode of operation was tested.

Abrupt changes in supply voltage was occur at zero crossings of the voltage.

8.5.3 Test Result

Test condition (Pursuant to EN 55014-2)					
Test Level in %U _T	50 Hz		60 Hz		
	Duration	Result	Duration	Result	
0	0.5	Pass	0.5	N/A	
40	10	Pass	12	N/A	
70	25	Pass	30	N/A	

Remark: UT is the rated voltage for the equipment.


8.6 EN 61000-4-3(Pursuant to EN 55014-2) Radiated Electromagnetic Field Immunity

Performance criterion: A Test Result: **Not Applicable**

Remark:

Containing electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.

8.6.1 Block Diagram of Test Setup

8.6.2 Test Setup and Procedure

The test was conducted in a fully anechoic chamber to maintain a uniform field of sufficient dimensions with respect to the EUT, and also in order to comply with various national and international laws prohibiting interference to radio communications.

The equipment was placed in the test facility on a non-conducting table 0.8m high (for floor standing EUT, is placed on a non-conducting support 0.1m height).

For all ports connected to EUT, manufacturer specified cable type and length was used, for those cables no specification, unshielded cable applied. Wire is left exposed to the electromagnetic field for a distance of 1m from the EUT. The EUT was arranged and connected according to its functional requirements

Before testing, the intensity of the established field strength had been checked by placing the field sensor at a calibration grid point, and with the field generating antenna and cables in the same positions as used for the calibration, the forward power needed to give the calibrated field strength was measured. Spot checks was made at a number of calibration grid points over the frequency range 80MHz to 1000MHz, both polarizations was checked.

After calibration, the EUT was initially placed with one face coincident with the calibration plane.

The frequency range is swept from 80 MHz to 1000 MHz at 3V/m EM field, with the signal 80% amplitude modulated with a 1 kHz sine-wave, pausing to adjust the r.f. signal level.

The dwell time at each frequency was 3s so as that the EUT to be exercised and be able to respond.

The step size was 1% of the fundamental with linear interpolation between calibrated points. Test was performed with the generating antenna facing each of the four sides of the EUT.

8.6.3 Test Result


Frequency (MHz)	Exposed Side	Field Strength (V/m)	Result
80 to 1000	Front	3V/m (r.m.s.)	Pass
80 to 1000	Left	3V/m (r.m.s.)	Pass
80 to 1000	Rear	3V/m (r.m.s.)	Pass
80 to 1000	Right	3V/m (r.m.s.)	Pass

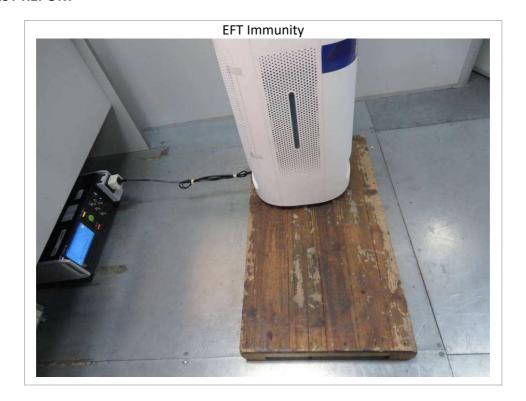
9. APPENDIX I - PHOTOS OF TEST SETUP

Radiated Power

Harmonics and Flicker



Inject current immunity



Surge and DIP Immunity

10. APPENDIX II – PHOTOS OF EUT

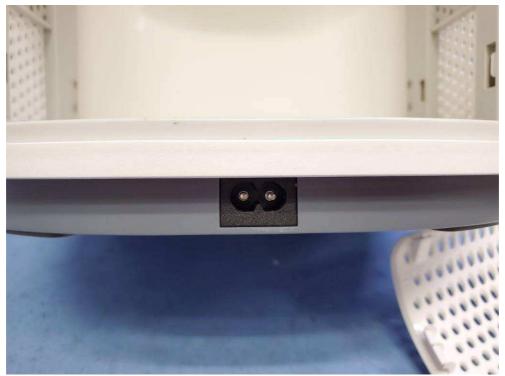
For model DS-X400W

Front view

Right side view

Left side view

Back view



Air outlet; control panel

Remove the filter

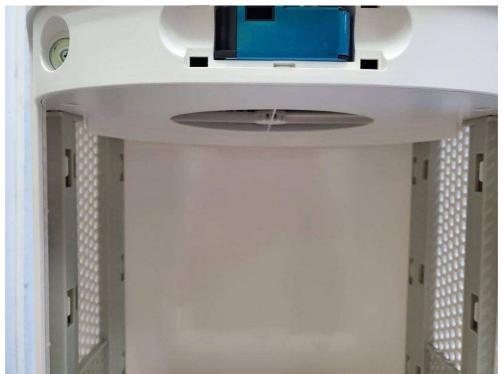
Appliance view

PM2.5 sensor cover

PM2.5 sensor position

PM2.5 sensor

Bottom view

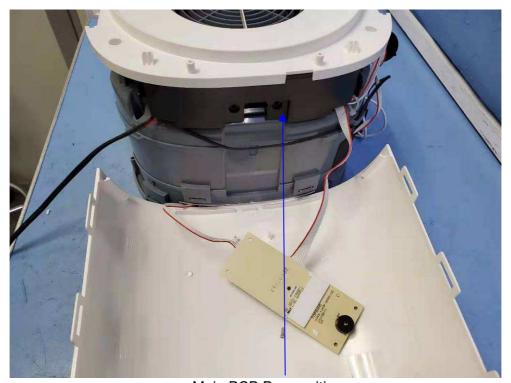


Inside view

Appliance inlet view

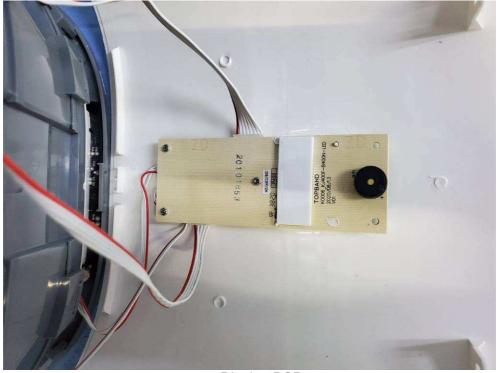
Air inlet

Air inlet; UV lamp position

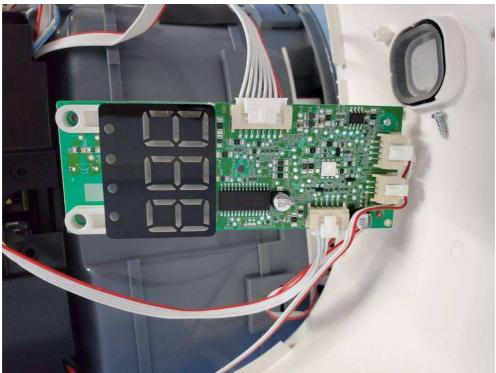


UV lamp PCB

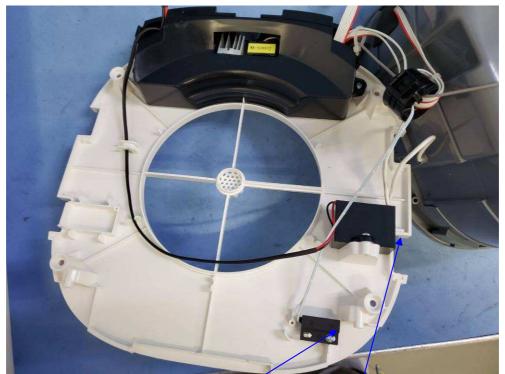
UV lamp



Main PCB Box position

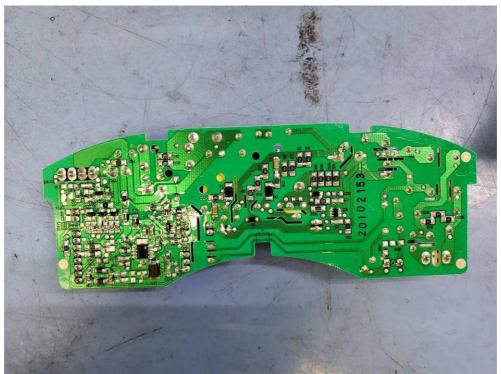


Display PCB, Main PCB Box



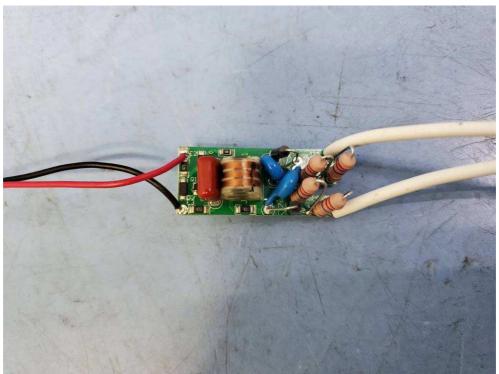
Display PCB

Display PCB

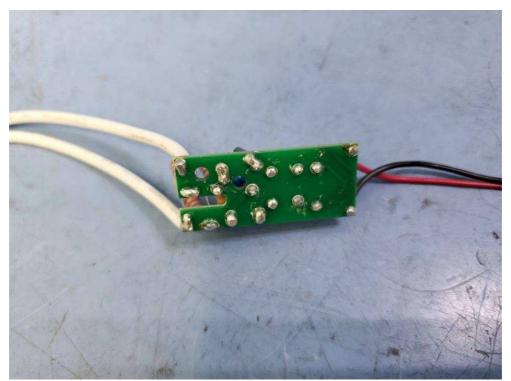


Hall sensor, Plasma generator

Main PCB



Main PCB

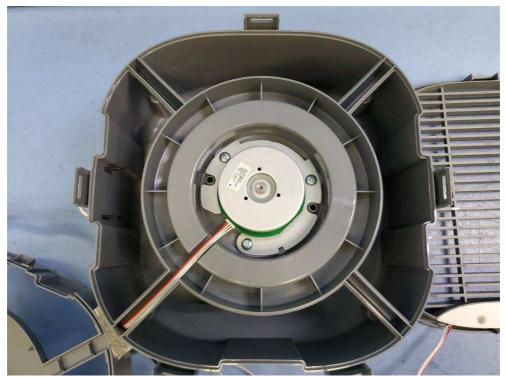


Plasma generator

Plasma generator

Plasma generator

Inner view

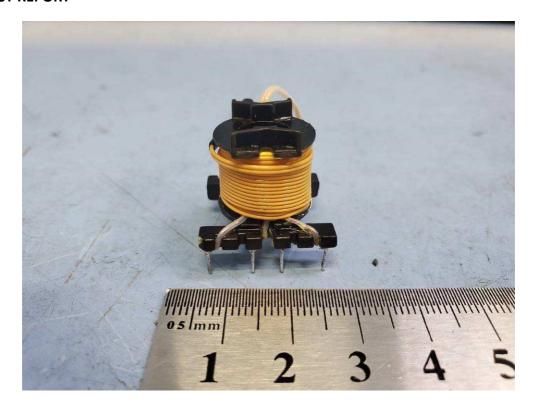


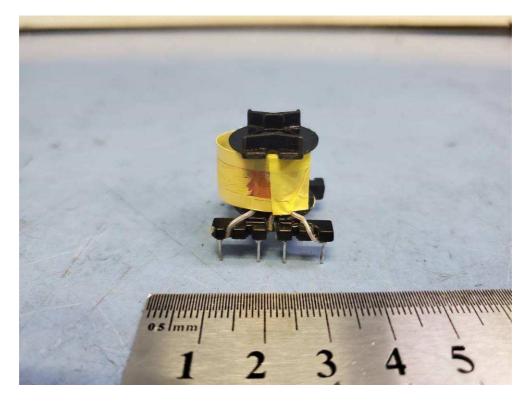
Control PCB

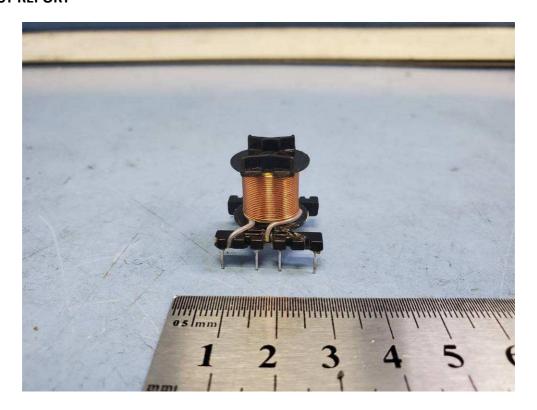
Cpntrol PCB

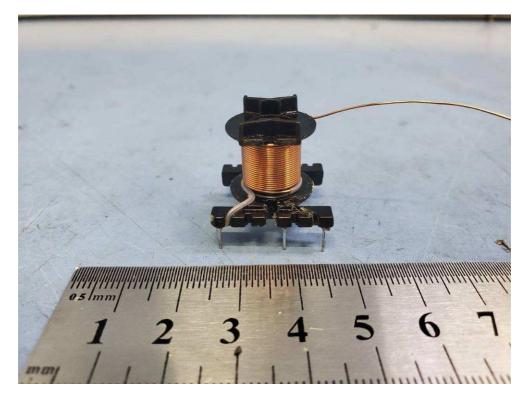
Motor position

Motor




Below photo for DS-X400W transformer on Main PCB:





For model DS-S800:

Front view

Left side view

right side view

PM2.5 sensor position

PM2.5 sensor

Air outlet

Display panel

Bottom air inlet

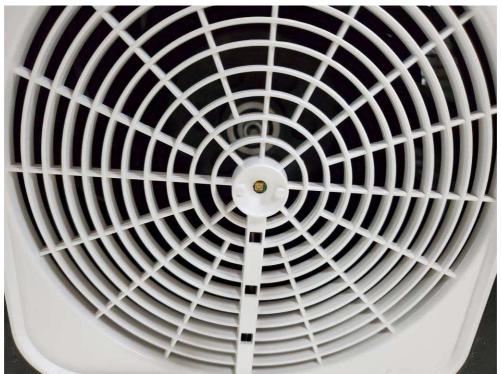
LED Ambient Light

Appliance inlet

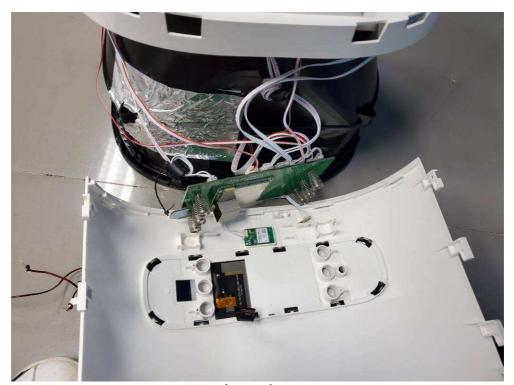
Bottom view

Inner view

Appliance inlet



Remove filter view

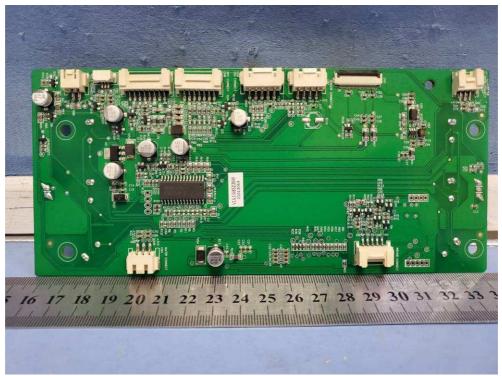


UV lamp position

UV lamp position

Inner view

Control PCB, Version: V07



Control PCB, Version: V07

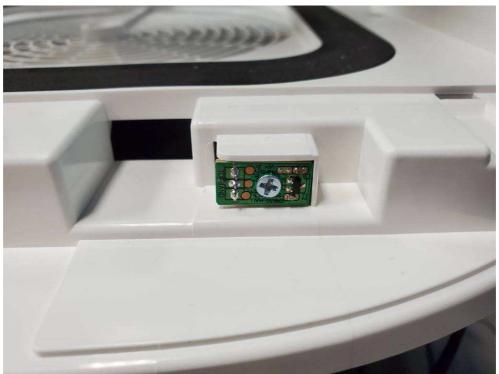
Alternative Control PCB, Version: V08



Alternative Control PCB, Version: V08

WiFi module

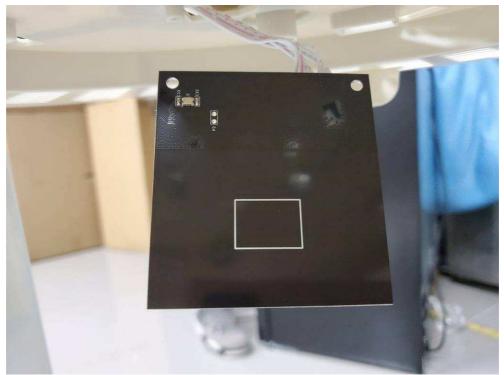
WiFi module



Diplay module

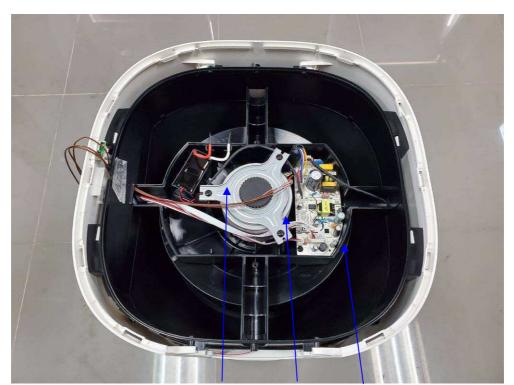
Diplay module

Hall sensor PCB



LED Ambient Light

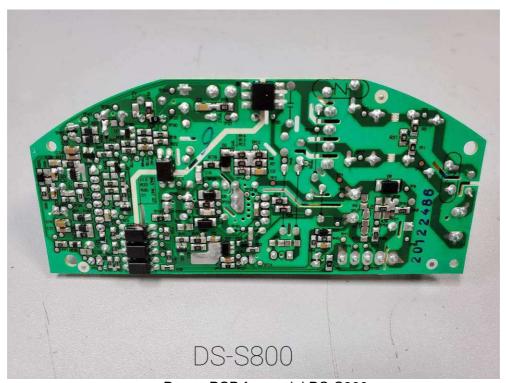
NFC module PCB



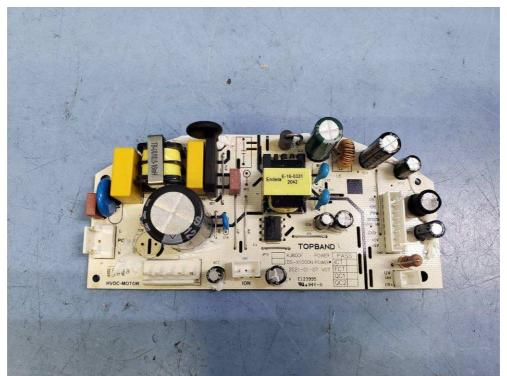
NFC module PCB

Main PCB cover

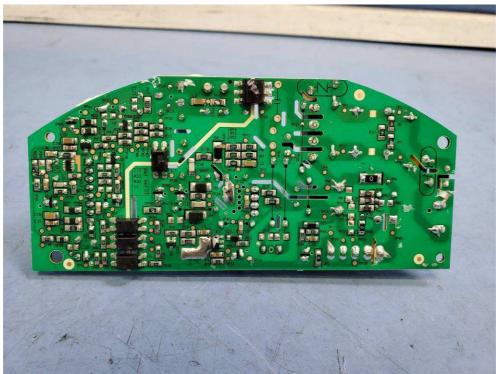
Plasma generator, fan motor, Power PCB



Power PCB

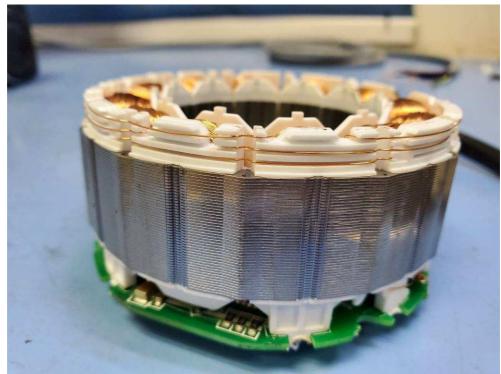


Power PCB for model DS-S800



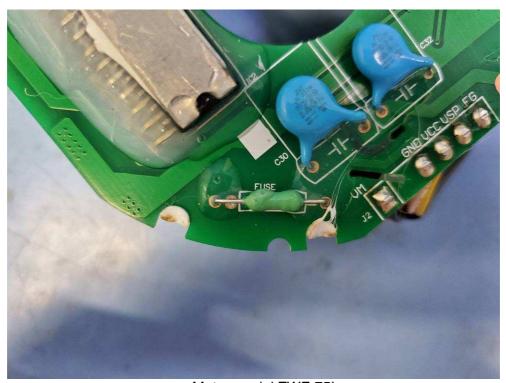
Power PCB for model DS-S800

Power PCB for model DS-X1000N-A, DS-X1000W

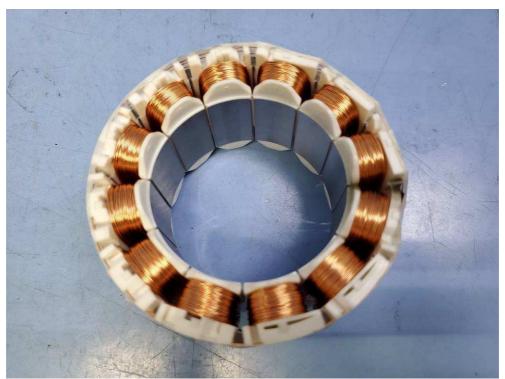


Power PCB for model DS-X1000N-A, DS-X1000W

Motor model ZWF-75L



Motor model ZWF-75L

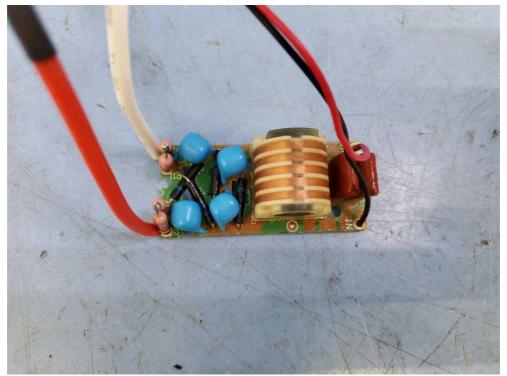


Motor model ZWF-75L

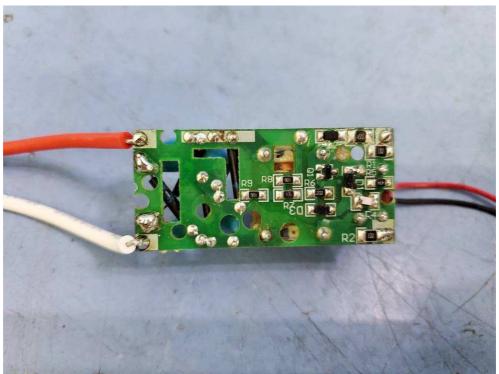
Motor model ZWF-75L

Motor model SIC-58CS-F185-1

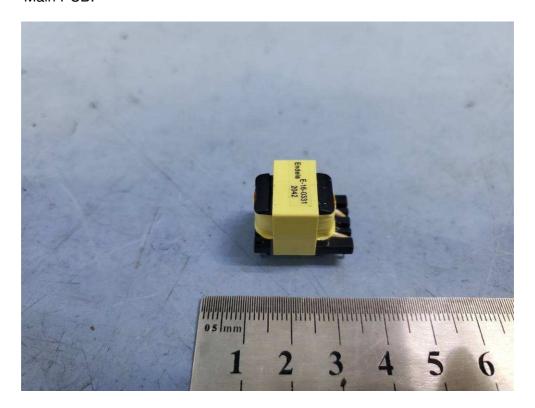
Motor model SIC-58CS-F185-1

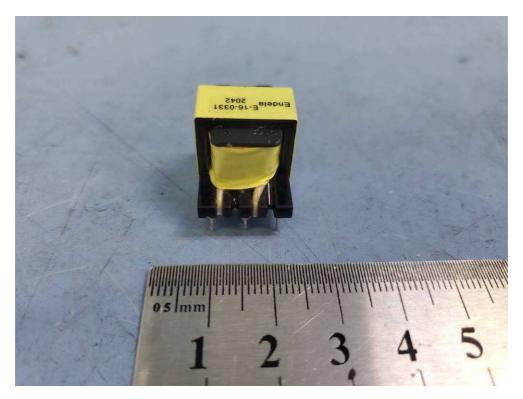


Motor model SIC-58CS-F185-1

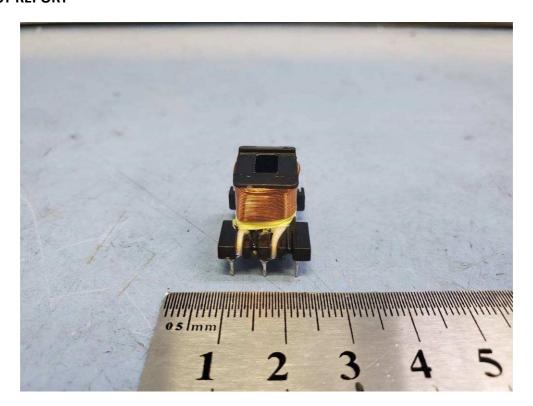


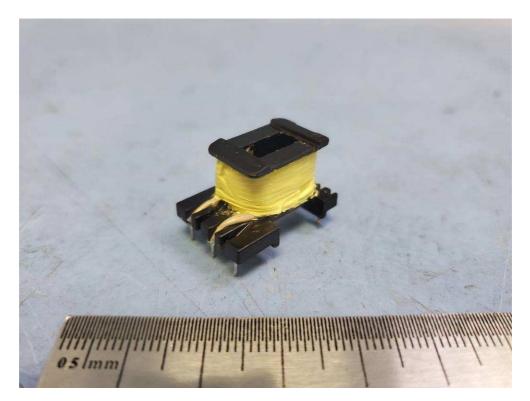
Plasma generator for model DS-S800, DS-X1000N-A and DS-X1000W


Plasma generator for model DS-S800, DS-X1000N-A and DS-X1000W



Plasma generator for model DS-S800, DS-X1000N-A and DS-X1000W




Below photo for DS-S800, DS-X1000N-A and DS-X1000W transformer on Main PCB:

